Flow of diffeomorphisms for SDEs with unbounded Hölder continuous drift
نویسندگان
چکیده
We consider a SDE with a smooth multiplicative non-degenerate noise and a possibly unbounded Hölder continuous drift term. We prove existence of a global flow of diffeomorphisms by means of a special transformation of the drift of Itô-Tanaka type. The proof requires non-standard elliptic estimates in Hölder spaces. As an application of the stochastic flow, we obtain a Bismut-Elworthy-Li type formula for the first derivatives of the associated diffusion semigroup.
منابع مشابه
Stochastic averaging for SDEs with Hopf Drift and polynomial diffusion coefficients
It is known that a stochastic differential equation (SDE) induces two probabilistic objects, namely a difusion process and a stochastic flow. While the diffusion process is determined by the innitesimal mean and variance given by the coefficients of the SDE, this is not the case for the stochastic flow induced by the SDE. In order to characterize the stochastic flow uniquely the innitesimal cov...
متن کاملPathwise uniqueness and continuous dependence for SDEs with nonregular drift
A new proof of a pathwise uniqueness result of Krylov and Röckner is given. It concerns SDEs with drift having only certain integrability properties. In spite of the poor regularity of the drift, pathwise continuous dependence on initial conditions may be obtained, by means of this new proof. The proof is formulated in such a way to show that the only major tool is a good regularity theory for ...
متن کاملDecay of Correlations for Slowly Mixing Flows
We show that polynomial decay of correlations is prevalent for a class of nonuniformly hyperbolic flows. These flows are the continuous time analogue of a class of nonuniformly hyperbolic diffeomorphisms for which Young proved polynomial decay of correlations. Roughly speaking, in situations where the decay rate O(1/nβ) has previously been proved for diffeomorphisms, we establish the decay rate...
متن کاملHölder Forms and Integrability of Invariant Distributions
Abstract. We prove an inequality for Hölder continuous differential forms on compact manifolds in which the integral of the form over the boundary of a sufficiently small, smoothly immersed disk is bounded by a certain multiplicative convex combination of the volume of the disk and the area of its boundary. This inequality has natural applications in dynamical systems, where Hölder forms are ub...
متن کاملUltimate Tendon Stress in CFRP Strengthened Unbounded HSC Post-Tensioned Continuous I-Beams
The use of unbounded tendons is common in prestressed concrete structures and evaluation of the stress increase in unbonded tendons at ultimate flexural strength of such structure has posed a great challenge over the years. Based on the bending experiment for two-span continuous post-tension beams with unbounded tendons and externally applied CFRP sheets, the monitoring of the stress increment ...
متن کامل